
    Whz	                     N    d Z ddlZddlmZ ddlmZ ddlmZm	Z	  G d de      Z
y)	zY
Feature agglomeration. Base classes and functions for performing feature
agglomeration.
    N)issparse   )TransformerMixin)check_is_fittedvalidate_datac                       e Zd ZdZd Zd Zy)AgglomerationTransformzH
    A class for feature agglomeration via the transform interface.
    c                    t        |        t        | |d      }| j                  t        j                  k(  rt        |      st        j                  | j                        }|j                  d   }t        j                  t        |      D cg c],  }t        j                  | j                  ||ddf         |z  . c}      }|S t        j                  | j                        D cg c])  }| j                  |dd| j                  |k(  f   d      + }}t        j                  |      j                  }|S c c}w c c}w )a  
        Transform a new matrix using the built clustering.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features) or                 (n_samples, n_samples)
            A M by N array of M observations in N dimensions or a length
            M array of M one-dimensional observations.

        Returns
        -------
        Y : ndarray of shape (n_samples, n_clusters) or (n_clusters,)
            The pooled values for each feature cluster.
        F)resetr   N   )axis)r   r   pooling_funcnpmeanr   bincountlabels_shapearrayrangeuniqueT)selfXsize	n_samplesinXls          `/var/www/html/jupyter_env/lib/python3.12/site-packages/sklearn/cluster/_feature_agglomeration.py	transformz AgglomerationTransform.transform   s     	$/';;t||,D
IDI)DTUqT\\1QT73d:UB 	 4<<0 !!!At||q'8$8"9!BB  "B	 Vs   1D8'.D=c                 n    t        |        t        j                  | j                  d      \  }}|d|f   S )a  
        Inverse the transformation and return a vector of size `n_features`.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_clusters) or (n_clusters,)
            The values to be assigned to each cluster of samples.

        Returns
        -------
        X_original : ndarray of shape (n_samples, n_features) or (n_features,)
            A vector of size `n_samples` with the values of `X` assigned to
            each of the cluster of samples.
        T)return_inverse.)r   r   r   r   )r   r   unilinverses       r   inverse_transformz(AgglomerationTransform.inverse_transform:   s2     			$,,tDgg    N)__name__
__module____qualname____doc__r    r%    r&   r   r	   r	      s     Dr&   r	   )r*   numpyr   scipy.sparser   baser   utils.validationr   r   r	   r+   r&   r   <module>r0      s%     ! # =9- 9r&   