
    Wh*                        d dl mZ d dlmZmZmZ d dlmZmZ d dl	m
Z
 d dlmZ erd dlmZ d dlmZ d dlmZ d d	lmZ  G d
 de      ZddZddZddZddZddZddZddZ	 	 d	 	 	 	 	 ddZg dZy)    )annotations)TYPE_CHECKINGAnyNoReturn)ExprMetadatacombine_metadata)flatten)Expr)Iterable)timezone)DType)TimeUnitc                  D    e Zd Zd	dZd
dZd
dZd
dZddZddZddZ	y)Selectorc                B    t        | j                  | j                        S N)r
   _to_compliant_expr	_metadata)selfs    L/var/www/html/jupyter_env/lib/python3.12/site-packages/narwhals/selectors.py_to_exprzSelector._to_expr   s    D++T^^<<    c                b    t        |t              rd}t        |      | j                         |z   S )Nz=unsupported operand type(s) for op: ('Selector' + 'Selector'))
isinstancer   	TypeErrorr   )r   othermsgs      r   __add__zSelector.__add__   s,    eX&QCC. }}&&r   c           
          t        t              r$ j                   fdt         ddd            S  j	                         z  S )Nc                J    j                  |       j                  |       z  S r   r   plxr   r   s    r   <lambda>z!Selector.__or__.<locals>.<lambda>   #    D33C85;S;STW;XX r   FT
str_as_litallow_multi_outputto_single_outputr   r   	__class__r   r   r   r   s   ``r   __or__zSelector.__or__   K    eX&>>X $'+%*	 	 }}&&r   c           
          t        t              r$ j                   fdt         ddd            S  j	                         z  S )Nc                J    j                  |       j                  |       z  S r   r!   r"   s    r   r$   z"Selector.__and__.<locals>.<lambda>,   r%   r   FTr&   r*   r,   s   ``r   __and__zSelector.__and__)   r.   r   c                    t         r   NotImplementedErrorr,   s     r   __rsub__zSelector.__rsub__7       !!r   c                    t         r   r3   r,   s     r   __rand__zSelector.__rand__:   r6   r   c                    t         r   r3   r,   s     r   __ror__zSelector.__ror__=   r6   r   N)returnr
   )r   r   r;   r
   )r   r   r;   r   )
__name__
__module____qualname__r   r   r-   r1   r5   r8   r:    r   r   r   r      s%    ='''"""r   r   c                 \    t        |       t        fdt        j                               S )a  Select columns based on their dtype.

    Arguments:
        dtypes: one or data types to select

    Returns:
        A new expression.

    Examples:
        >>> import pyarrow as pa
        >>> import narwhals as nw
        >>> import narwhals.selectors as ncs
        >>> df_native = pa.table({"a": [1, 2], "b": ["x", "y"], "c": [4.1, 2.3]})
        >>> df = nw.from_native(df_native)

        Let's select int64 and float64  dtypes and multiply each value by 2:

        >>> df.select(ncs.by_dtype(nw.Int64, nw.Float64) * 2).to_native()
        pyarrow.Table
        a: int64
        c: double
        ----
        a: [[2,4]]
        c: [[8.2,4.6]]
    c                :    | j                   j                        S r   )	selectorsby_dtype)r#   	flatteneds    r   r$   zby_dtype.<locals>.<lambda>]   s    CMM**95 r   )r	   r   r   selector_multi_unnamed)dtypesrD   s    @r   rC   rC   A   s*    4 I5++- r   c                F     t         fdt        j                               S )a  Select all columns that match the given regex pattern.

    Arguments:
        pattern: A valid regular expression pattern.

    Returns:
        A new expression.

    Examples:
        >>> import pandas as pd
        >>> import narwhals as nw
        >>> import narwhals.selectors as ncs
        >>> df_native = pd.DataFrame(
        ...     {"bar": [123, 456], "baz": [2.0, 5.5], "zap": [0, 1]}
        ... )
        >>> df = nw.from_native(df_native)

        Let's select column names containing an 'a', preceded by a character that is not 'z':

        >>> df.select(ncs.matches("[^z]a")).to_native()
           bar  baz
        0  123  2.0
        1  456  5.5
    c                :    | j                   j                        S r   )rB   matches)r#   patterns    r   r$   zmatches.<locals>.<lambda>|   s    CMM))'2 r   r   r   rE   )rJ   s   `r   rI   rI   b   s     2 2L4W4W4Y r   c                 @    t        d t        j                               S )u  Select numeric columns.

    Returns:
        A new expression.

    Examples:
        >>> import polars as pl
        >>> import narwhals as nw
        >>> import narwhals.selectors as ncs
        >>> df_native = pl.DataFrame({"a": [1, 2], "b": ["x", "y"], "c": [4.1, 2.3]})
        >>> df = nw.from_native(df_native)

        Let's select numeric dtypes and multiply each value by 2:

        >>> df.select(ncs.numeric() * 2).to_native()
        shape: (2, 2)
        ┌─────┬─────┐
        │ a   ┆ c   │
        │ --- ┆ --- │
        │ i64 ┆ f64 │
        ╞═════╪═════╡
        │ 2   ┆ 8.2 │
        │ 4   ┆ 4.6 │
        └─────┴─────┘
    c                6    | j                   j                         S r   )rB   numericr#   s    r   r$   znumeric.<locals>.<lambda>       CMM))+ r   rK   r?   r   r   rN   rN      s    4 +\-P-P-R r   c                 @    t        d t        j                               S )u  Select boolean columns.

    Returns:
        A new expression.

    Examples:
        >>> import polars as pl
        >>> import narwhals as nw
        >>> import narwhals.selectors as ncs
        >>> df_native = pl.DataFrame({"a": [1, 2], "b": ["x", "y"], "c": [False, True]})
        >>> df = nw.from_native(df_native)

        Let's select boolean dtypes:

        >>> df.select(ncs.boolean())
        ┌──────────────────┐
        |Narwhals DataFrame|
        |------------------|
        |  shape: (2, 1)   |
        |  ┌───────┐       |
        |  │ c     │       |
        |  │ ---   │       |
        |  │ bool  │       |
        |  ╞═══════╡       |
        |  │ false │       |
        |  │ true  │       |
        |  └───────┘       |
        └──────────────────┘
    c                6    | j                   j                         S r   )rB   booleanrO   s    r   r$   zboolean.<locals>.<lambda>   rP   r   rK   r?   r   r   rS   rS      s    < +\-P-P-R r   c                 @    t        d t        j                               S )uo  Select string columns.

    Returns:
        A new expression.

    Examples:
        >>> import polars as pl
        >>> import narwhals as nw
        >>> import narwhals.selectors as ncs
        >>> df_native = pl.DataFrame({"a": [1, 2], "b": ["x", "y"], "c": [False, True]})
        >>> df = nw.from_native(df_native)

        Let's select string dtypes:

        >>> df.select(ncs.string()).to_native()
        shape: (2, 1)
        ┌─────┐
        │ b   │
        │ --- │
        │ str │
        ╞═════╡
        │ x   │
        │ y   │
        └─────┘
    c                6    | j                   j                         S r   )rB   stringrO   s    r   r$   zstring.<locals>.<lambda>   s    CMM((* r   rK   r?   r   r   rV   rV      s    4 *L,O,O,Q r   c                 @    t        d t        j                               S )u  Select categorical columns.

    Returns:
        A new expression.

    Examples:
        >>> import polars as pl
        >>> import narwhals as nw
        >>> import narwhals.selectors as ncs
        >>> df_native = pl.DataFrame({"a": [1, 2], "b": ["x", "y"], "c": [False, True]})

        Let's convert column "b" to categorical, and then select categorical dtypes:

        >>> df = nw.from_native(df_native).with_columns(
        ...     b=nw.col("b").cast(nw.Categorical())
        ... )
        >>> df.select(ncs.categorical()).to_native()
        shape: (2, 1)
        ┌─────┐
        │ b   │
        │ --- │
        │ cat │
        ╞═════╡
        │ x   │
        │ y   │
        └─────┘
    c                6    | j                   j                         S r   )rB   categoricalrO   s    r   r$   zcategorical.<locals>.<lambda>   s    CMM--/ r   rK   r?   r   r   rY   rY      s    8 /1T1T1V r   c                 @    t        d t        j                               S )a  Select all columns.

    Returns:
        A new expression.

    Examples:
        >>> import pandas as pd
        >>> import narwhals as nw
        >>> import narwhals.selectors as ncs
        >>> df_native = pd.DataFrame({"a": [1, 2], "b": ["x", "y"], "c": [False, True]})
        >>> df = nw.from_native(df_native)

        Let's select all dtypes:

        >>> df.select(ncs.all()).to_native()
           a  b      c
        0  1  x  False
        1  2  y   True
    c                6    | j                   j                         S r   )rB   allrO   s    r   r$   zall.<locals>.<lambda>  s    CMM%%' r   rK   r?   r   r   r\   r\     s    ( ')L)L)N r   Nc                J     t         fdt        j                               S )a  Select all datetime columns, optionally filtering by time unit/zone.

    Arguments:
        time_unit: One (or more) of the allowed timeunit precision strings, "ms", "us",
            "ns" and "s". Omit to select columns with any valid timeunit.
        time_zone: Specify which timezone(s) to select

            * One or more timezone strings, as defined in zoneinfo (to see valid options
                run `import zoneinfo; zoneinfo.available_timezones()` for a full list).
            * Set `None` to select Datetime columns that do not have a timezone.
            * Set `"*"` to select Datetime columns that have *any* timezone.

    Returns:
        A new expression.

    Examples:
        >>> from datetime import datetime, timezone
        >>> import pyarrow as pa
        >>> import narwhals as nw
        >>> import narwhals.selectors as ncs
        >>>
        >>> utc_tz = timezone.utc
        >>> data = {
        ...     "tstamp_utc": [
        ...         datetime(2023, 4, 10, 12, 14, 16, 999000, tzinfo=utc_tz),
        ...         datetime(2025, 8, 25, 14, 18, 22, 666000, tzinfo=utc_tz),
        ...     ],
        ...     "tstamp": [
        ...         datetime(2000, 11, 20, 18, 12, 16, 600000),
        ...         datetime(2020, 10, 30, 10, 20, 25, 123000),
        ...     ],
        ...     "numeric": [3.14, 6.28],
        ... }
        >>> df_native = pa.table(data)
        >>> df_nw = nw.from_native(df_native)
        >>> df_nw.select(ncs.datetime()).to_native()
        pyarrow.Table
        tstamp_utc: timestamp[us, tz=UTC]
        tstamp: timestamp[us]
        ----
        tstamp_utc: [[2023-04-10 12:14:16.999000Z,2025-08-25 14:18:22.666000Z]]
        tstamp: [[2000-11-20 18:12:16.600000,2020-10-30 10:20:25.123000]]

        Select only datetime columns that have any time_zone specification:

        >>> df_nw.select(ncs.datetime(time_zone="*")).to_native()
        pyarrow.Table
        tstamp_utc: timestamp[us, tz=UTC]
        ----
        tstamp_utc: [[2023-04-10 12:14:16.999000Z,2025-08-25 14:18:22.666000Z]]
    c                >    | j                   j                        S )N	time_unit	time_zone)rB   datetime)r#   r`   ra   s    r   r$   zdatetime.<locals>.<lambda>S  s    CMM**Y)*T r   rK   r_   s   ``r   rb   rb     s"    n T++- r   )r\   rS   rC   rY   rb   rI   rN   rV   )rF   z3DType | type[DType] | Iterable[DType | type[DType]]r;   r   )rJ   strr;   r   )r;   r   )N)*N)r`   z$TimeUnit | Iterable[TimeUnit] | Nonera   z7str | timezone | Iterable[str | timezone | None] | Noner;   r   )
__future__r   typingr   r   r   narwhals._expression_parsingr   r   narwhals._utilsr	   narwhals.exprr
   collections.abcr   rb   r   narwhals.dtypesr   narwhals.typingr   r   rC   rI   rN   rS   rV   rY   r\   __all__r?   r   r   <module>rn      s    " / / G # (!%(-"t -"`B<> F>B4 7;IT:3:F: :z	r   